Composite Quantile Regression and the Oracle Model Selection Theory

نویسندگان

  • HUI ZOU
  • MING YUAN
چکیده

Coefficient estimation and variable selection in multiple linear regression is routinely done in the (penalized) least squares (LS) framework. The concept of model selection oracle introduced by Fan and Li [J. Amer. Statist. Assoc. 96 (2001) 1348–1360] characterizes the optimal behavior of a model selection procedure. However, the least-squares oracle theory breaks down if the error variance is infinite. In the current paper we propose a new regression method called composite quantile regression (CQR). We show that the oracle model selection theory using the CQR oracle works beautifully even when the error variance is infinite. We develop a new oracular procedure to achieve the optimal properties of the CQR oracle. When the error variance is finite, CQR still enjoys great advantages in terms of estimation efficiency. We show that the relative efficiency of CQR compared to the least squares is greater than 70% regardless the error distribution. Moreover, CQR could be much more efficient and sometimes arbitrarily more efficient than the least squares. The same conclusions hold when comparing a CQR-oracular estimator with a LS-oracular estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection in Single Index Quantile Regression for Heteroscedastic Data

Quantile regression (QR) has become a popular method of data analysis, especially when the error term is heteroscedastic, due to its relevance in many scientific studies. The ubiquity of high dimensional data has led to a number of variable selection methods for linear/nonlinear QR models and, recently, for the single index quantile regression (SIQR) model. We propose a new algorithm for simult...

متن کامل

Local Quantile Regression

Conditional quantile curves provide a comprehensive picture of a response contingent on explanatory variables. Quantile regression is a technique to estimate such curves. In a flexible modeling framework, a specific form of the quantile is not a priori fixed. Indeed, the majority of applications do not per se require specific functional forms. This motivates a local parametric rather than a glo...

متن کامل

Weighted Type of Quantile Regression and its Application

In this paper we introduce a weighted composite quantile regression (CQR) estimation approach and study its application in nonlinear models such as exponential models and ARCH type of models. The weighted CQR is augmented by using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same...

متن کامل

New Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models By

The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varyingcoefficient functions and the ...

متن کامل

New Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient

The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008